home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Software of the Month Club 2000 October
/
Software of the Month - Ultimate Collection Shareware 277.iso
/
pc
/
PROGRAMS
/
UTILITY
/
WINLINUX
/
DATA1.CAB
/
programs_-_include
/
ASM-PPC
/
PGTABLE.H
< prev
next >
Wrap
C/C++ Source or Header
|
1999-09-17
|
22KB
|
643 lines
#include <linux/config.h>
#ifndef _PPC_PGTABLE_H
#define _PPC_PGTABLE_H
#ifndef __ASSEMBLY__
#include <linux/mm.h>
#include <asm/processor.h> /* For TASK_SIZE */
#include <asm/mmu.h>
#include <asm/page.h>
extern void local_flush_tlb_all(void);
extern void local_flush_tlb_mm(struct mm_struct *mm);
extern void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr);
extern void local_flush_tlb_range(struct mm_struct *mm, unsigned long start,
unsigned long end);
#define flush_tlb_all local_flush_tlb_all
#define flush_tlb_mm local_flush_tlb_mm
#define flush_tlb_page local_flush_tlb_page
#define flush_tlb_range local_flush_tlb_range
/*
* No cache flushing is required when address mappings are
* changed, because the caches on PowerPCs are physically
* addressed.
* Also, when SMP we use the coherency (M) bit of the
* BATs and PTEs. -- Cort
*/
#define flush_cache_all() do { } while (0)
#define flush_cache_mm(mm) do { } while (0)
#define flush_cache_range(mm, a, b) do { } while (0)
#define flush_cache_page(vma, p) do { } while (0)
extern void flush_icache_range(unsigned long, unsigned long);
extern void flush_page_to_ram(unsigned long);
extern unsigned long va_to_phys(unsigned long address);
extern pte_t *va_to_pte(struct task_struct *tsk, unsigned long address);
#endif /* __ASSEMBLY__ */
/*
* The PowerPC MMU uses a hash table containing PTEs, together with
* a set of 16 segment registers (on 32-bit implementations), to define
* the virtual to physical address mapping.
*
* We use the hash table as an extended TLB, i.e. a cache of currently
* active mappings. We maintain a two-level page table tree, much like
* that used by the i386, for the sake of the Linux memory management code.
* Low-level assembler code in head.S (procedure hash_page) is responsible
* for extracting ptes from the tree and putting them into the hash table
* when necessary, and updating the accessed and modified bits in the
* page table tree.
*
* The PowerPC MPC8xx uses a TLB with hardware assisted, software tablewalk.
* We also use the two level tables, but we can put the real bits in them
* needed for the TLB and tablewalk. These definitions require Mx_CTR.PPM = 0,
* Mx_CTR.PPCS = 0, and MD_CTR.TWAM = 1. The level 2 descriptor has
* additional page protection (when Mx_CTR.PPCS = 1) that allows TLB hit
* based upon user/super access. The TLB does not have accessed nor write
* protect. We assume that if the TLB get loaded with an entry it is
* accessed, and overload the changed bit for write protect. We use
* two bits in the software pte that are supposed to be set to zero in
* the TLB entry (24 and 25) for these indicators. Although the level 1
* descriptor contains the guarded and writethrough/copyback bits, we can
* set these at the page level since they get copied from the Mx_TWC
* register when the TLB entry is loaded. We will use bit 27 for guard, since
* that is where it exists in the MD_TWC, and bit 26 for writethrough.
* These will get masked from the level 2 descriptor at TLB load time, and
* copied to the MD_TWC before it gets loaded.
*/
/* PMD_SHIFT determines the size of the area mapped by the second-level page tables */
#define PMD_SHIFT 22
#define PMD_SIZE (1UL << PMD_SHIFT)
#define PMD_MASK (~(PMD_SIZE-1))
/* PGDIR_SHIFT determines what a third-level page table entry can map */
#define PGDIR_SHIFT 22
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
#define PGDIR_MASK (~(PGDIR_SIZE-1))
/*
* entries per page directory level: our page-table tree is two-level, so
* we don't really have any PMD directory.
*/
#define PTRS_PER_PTE 1024
#define PTRS_PER_PMD 1
#define PTRS_PER_PGD 1024
#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
/* Just any arbitrary offset to the start of the vmalloc VM area: the
* current 64MB value just means that there will be a 64MB "hole" after the
* physical memory until the kernel virtual memory starts. That means that
* any out-of-bounds memory accesses will hopefully be caught.
* The vmalloc() routines leaves a hole of 4kB between each vmalloced
* area for the same reason. ;)
*
* The vmalloc_offset MUST be larger than the gap between the bat2 mapping
* and the size of physical ram. Since the bat2 mapping can be larger than
* the amount of ram we have vmalloc_offset must ensure that we don't try
* to allocate areas that don't exist! This value of 64M will only cause
* problems when we have >128M -- Cort
*/
#define VMALLOC_OFFSET (0x4000000) /* 64M */
#define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
#define VMALLOC_VMADDR(x) ((unsigned long)(x))
#define VMALLOC_END 0xf0000000
/*
* Bits in a linux-style PTE. These match the bits in the
* (hardware-defined) PowerPC PTE as closely as possible.
*/
#ifndef CONFIG_8xx
#define _PAGE_PRESENT 0x001 /* software: pte contains a translation */
#define _PAGE_USER 0x002 /* matches one of the PP bits */
#define _PAGE_RW 0x004 /* software: user write access allowed */
#define _PAGE_GUARDED 0x008
#define _PAGE_COHERENT 0x010 /* M: enforce memory coherence (SMP systems) */
#define _PAGE_NO_CACHE 0x020 /* I: cache inhibit */
#define _PAGE_WRITETHRU 0x040 /* W: cache write-through */
#define _PAGE_DIRTY 0x080 /* C: page changed */
#define _PAGE_ACCESSED 0x100 /* R: page referenced */
#define _PAGE_HWWRITE 0x200 /* software: _PAGE_RW & _PAGE_DIRTY */
#define _PAGE_SHARED 0
#else
#define _PAGE_PRESENT 0x0001 /* Page is valid */
#define _PAGE_NO_CACHE 0x0002 /* I: cache inhibit */
#define _PAGE_SHARED 0x0004 /* No ASID (context) compare */
/* These four software bits must be masked out when the entry is loaded
* into the TLB.
*/
#define _PAGE_GUARDED 0x0010 /* software: guarded access */
#define _PAGE_WRITETHRU 0x0020 /* software: use writethrough cache */
#define _PAGE_RW 0x0040 /* software: user write access allowed */
#define _PAGE_ACCESSED 0x0080 /* software: page referenced */
#define _PAGE_DIRTY 0x0100 /* C: page changed (write protect) */
#define _PAGE_USER 0x0800 /* One of the PP bits, the other must be 0 */
/* This is used to enable or disable the actual hardware write
* protection.
*/
#define _PAGE_HWWRITE _PAGE_DIRTY
#endif /* CONFIG_8xx */
#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
#ifdef __SMP__
#define _PAGE_BASE _PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_COHERENT
#else
#define _PAGE_BASE _PAGE_PRESENT | _PAGE_ACCESSED
#endif
#define _PAGE_WRENABLE _PAGE_RW | _PAGE_DIRTY | _PAGE_HWWRITE
#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED)
#define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER | \
_PAGE_SHARED)
#define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER)
#define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER)
#define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_SHARED)
#define PAGE_KERNEL_CI __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_SHARED | \
_PAGE_NO_CACHE )
/*
* The PowerPC can only do execute protection on a segment (256MB) basis,
* not on a page basis. So we consider execute permission the same as read.
* Also, write permissions imply read permissions.
* This is the closest we can get..
*/
#define __P000 PAGE_NONE
#define __P001 PAGE_READONLY
#define __P010 PAGE_COPY
#define __P011 PAGE_COPY
#define __P100 PAGE_READONLY
#define __P101 PAGE_READONLY
#define __P110 PAGE_COPY
#define __P111 PAGE_COPY
#define __S000 PAGE_NONE
#define __S001 PAGE_READONLY
#define __S010 PAGE_SHARED
#define __S011 PAGE_SHARED
#define __S100 PAGE_READONLY
#define __S101 PAGE_READONLY
#define __S110 PAGE_SHARED
#define __S111 PAGE_SHARED
/*
* BAD_PAGETABLE is used when we need a bogus page-table, while
* BAD_PAGE is used for a bogus page.
*
* ZERO_PAGE is a global shared page that is always zero: used
* for zero-mapped memory areas etc..
*/
#ifndef __ASSEMBLY__
extern pte_t __bad_page(void);
extern pte_t * __bad_pagetable(void);
extern unsigned long empty_zero_page[1024];
#endif __ASSEMBLY__
#define BAD_PAGETABLE __bad_pagetable()
#define BAD_PAGE __bad_page()
#define ZERO_PAGE ((unsigned long) empty_zero_page)
/* number of bits that fit into a memory pointer */
#define BITS_PER_PTR (8*sizeof(unsigned long))
/* to align the pointer to a pointer address */
#define PTR_MASK (~(sizeof(void*)-1))
/* sizeof(void*) == 1<<SIZEOF_PTR_LOG2 */
/* 64-bit machines, beware! SRB. */
#define SIZEOF_PTR_LOG2 2
/* to set the page-dir */
/* tsk is a task_struct and pgdir is a pte_t */
#ifndef CONFIG_8xx
#define SET_PAGE_DIR(tsk,pgdir) \
((tsk)->tss.pg_tables = (unsigned long *)(pgdir))
#else /* CONFIG_8xx */
#define SET_PAGE_DIR(tsk,pgdir) \
do { \
unsigned long __pgdir = (unsigned long)pgdir; \
((tsk)->tss.pg_tables = (unsigned long *)(__pgdir)); \
asm("mtspr %0,%1 \n\t" : : "i"(M_TWB), "r"(__pa(__pgdir))); \
} while (0)
#endif /* CONFIG_8xx */
#ifndef __ASSEMBLY__
extern inline int pte_none(pte_t pte) { return !pte_val(pte); }
extern inline int pte_present(pte_t pte) { return pte_val(pte) & _PAGE_PRESENT; }
extern inline void pte_clear(pte_t *ptep) { pte_val(*ptep) = 0; }
extern inline int pmd_none(pmd_t pmd) { return !pmd_val(pmd); }
extern inline int pmd_bad(pmd_t pmd) { return (pmd_val(pmd) & ~PAGE_MASK) != 0; }
extern inline int pmd_present(pmd_t pmd) { return (pmd_val(pmd) & PAGE_MASK) != 0; }
extern inline void pmd_clear(pmd_t * pmdp) { pmd_val(*pmdp) = 0; }
/*
* The "pgd_xxx()" functions here are trivial for a folded two-level
* setup: the pgd is never bad, and a pmd always exists (as it's folded
* into the pgd entry)
*/
extern inline int pgd_none(pgd_t pgd) { return 0; }
extern inline int pgd_bad(pgd_t pgd) { return 0; }
extern inline int pgd_present(pgd_t pgd) { return 1; }
extern inline void pgd_clear(pgd_t * pgdp) { }
/*
* The following only work if pte_present() is true.
* Undefined behaviour if not..
*/
extern inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER; }
extern inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; }
extern inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_USER; }
extern inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
extern inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
extern inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; }
extern inline void pte_cache(pte_t pte) { pte_val(pte) &= ~_PAGE_NO_CACHE; }
extern inline pte_t pte_rdprotect(pte_t pte) {
pte_val(pte) &= ~_PAGE_USER; return pte; }
extern inline pte_t pte_exprotect(pte_t pte) {
pte_val(pte) &= ~_PAGE_USER; return pte; }
extern inline pte_t pte_wrprotect(pte_t pte) {
pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; }
extern inline pte_t pte_mkclean(pte_t pte) {
pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; }
extern inline pte_t pte_mkold(pte_t pte) {
pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
extern inline pte_t pte_mkread(pte_t pte) {
pte_val(pte) |= _PAGE_USER; return pte; }
extern inline pte_t pte_mkexec(pte_t pte) {
pte_val(pte) |= _PAGE_USER; return pte; }
extern inline pte_t pte_mkwrite(pte_t pte)
{
pte_val(pte) |= _PAGE_RW;
if (pte_val(pte) & _PAGE_DIRTY)
pte_val(pte) |= _PAGE_HWWRITE;
return pte;
}
extern inline pte_t pte_mkdirty(pte_t pte)
{
pte_val(pte) |= _PAGE_DIRTY;
if (pte_val(pte) & _PAGE_RW)
pte_val(pte) |= _PAGE_HWWRITE;
return pte;
}
extern inline pte_t pte_mkyoung(pte_t pte) {
pte_val(pte) |= _PAGE_ACCESSED; return pte; }
/* Certain architectures need to do special things when pte's
* within a page table are directly modified. Thus, the following
* hook is made available.
*/
#if 1
#define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))
#else
extern inline void set_pte(pte_t *pteptr, pte_t pteval)
{
unsigned long val = pte_val(pteval);
extern void xmon(void *);
if ((val & _PAGE_PRESENT) && ((val < 0x111000 || (val & 0x800)
|| ((val & _PAGE_HWWRITE) && (~val & (_PAGE_RW|_PAGE_DIRTY)))) {
printk("bad pte val %lx ptr=%p\n", val, pteptr);
xmon(0);
}
*pteptr = pteval;
}
#endif
/*
* Conversion functions: convert a page and protection to a page entry,
* and a page entry and page directory to the page they refer to.
*/
static inline pte_t mk_pte_phys(unsigned long page, pgprot_t pgprot)
{ pte_t pte; pte_val(pte) = (page) | pgprot_val(pgprot); return pte; }
extern inline pte_t mk_pte(unsigned long page, pgprot_t pgprot)
{ pte_t pte; pte_val(pte) = __pa(page) | pgprot_val(pgprot); return pte; }
extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{ pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; }
extern inline unsigned long pte_page(pte_t pte)
{ return (unsigned long) __va(pte_val(pte) & PAGE_MASK); }
extern inline unsigned long pmd_page(pmd_t pmd)
{ return pmd_val(pmd); }
/* to find an entry in a kernel page-table-directory */
#define pgd_offset_k(address) pgd_offset(&init_mm, address)
/* to find an entry in a page-table-directory */
extern inline pgd_t * pgd_offset(struct mm_struct * mm, unsigned long address)
{
return mm->pgd + (address >> PGDIR_SHIFT);
}
/* Find an entry in the second-level page table.. */
extern inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address)
{
return (pmd_t *) dir;
}
/* Find an entry in the third-level page table.. */
extern inline pte_t * pte_offset(pmd_t * dir, unsigned long address)
{
return (pte_t *) pmd_page(*dir) + ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
}
/*
* This is handled very differently on the PPC since out page tables
* are all 0's and I want to be able to use these zero'd pages elsewhere
* as well - it gives us quite a speedup.
*
* Note that the SMP/UP versions are the same but we don't need a
* per cpu list of zero pages because we do the zero-ing with the cache
* off and the access routines are lock-free but the pgt cache stuff
* is per-cpu since it isn't done with any lock-free access routines
* (although I think we need arch-specific routines so I can do lock-free).
*
* I need to generalize this so we can use it for other arch's as well.
* -- Cort
*/
#ifdef __SMP__
#define quicklists cpu_data[smp_processor_id()]
#else
extern struct pgtable_cache_struct {
unsigned long *pgd_cache;
unsigned long *pte_cache;
unsigned long pgtable_cache_sz;
} quicklists;
#endif
#define pgd_quicklist (quicklists.pgd_cache)
#define pmd_quicklist ((unsigned long *)0)
#define pte_quicklist (quicklists.pte_cache)
#define pgtable_cache_size (quicklists.pgtable_cache_sz)
extern unsigned long *zero_cache; /* head linked list of pre-zero'd pages */
extern unsigned long zero_sz; /* # currently pre-zero'd pages */
extern unsigned long zeropage_hits; /* # zero'd pages request that we've done */
extern unsigned long zeropage_calls; /* # zero'd pages request that've been made */
extern unsigned long zerototal; /* # pages zero'd over time */
#define zero_quicklist (zero_cache)
#define zero_cache_sz (zero_sz)
#define zero_cache_calls (zeropage_calls)
#define zero_cache_hits (zeropage_hits)
#define zero_cache_total (zerototal)
/* return a pre-zero'd page from the list, return NULL if none available -- Cort */
extern unsigned long get_zero_page_fast(void);
extern __inline__ pgd_t *get_pgd_slow(void)
{
pgd_t *ret/* = (pgd_t *)__get_free_page(GFP_KERNEL)*/, *init;
if ( (ret = (pgd_t *)get_zero_page_fast()) == NULL )
{
if ( (ret = (pgd_t *)__get_free_page(GFP_KERNEL)) != NULL )
memset (ret, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
}
if (ret) {
init = pgd_offset(&init_mm, 0);
/*memset (ret, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));*/
memcpy (ret + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
(PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
}
return ret;
}
extern __inline__ pgd_t *get_pgd_fast(void)
{
unsigned long *ret;
if((ret = pgd_quicklist) != NULL) {
pgd_quicklist = (unsigned long *)(*ret);
ret[0] = ret[1];
pgtable_cache_size--;
} else
ret = (unsigned long *)get_pgd_slow();
return (pgd_t *)ret;
}
extern __inline__ void free_pgd_fast(pgd_t *pgd)
{
*(unsigned long *)pgd = (unsigned long) pgd_quicklist;
pgd_quicklist = (unsigned long *) pgd;
pgtable_cache_size++;
}
extern __inline__ void free_pgd_slow(pgd_t *pgd)
{
free_page((unsigned long)pgd);
}
extern pte_t *get_pte_slow(pmd_t *pmd, unsigned long address_preadjusted);
extern __inline__ pte_t *get_pte_fast(void)
{
unsigned long *ret;
if((ret = (unsigned long *)pte_quicklist) != NULL) {
pte_quicklist = (unsigned long *)(*ret);
ret[0] = ret[1];
pgtable_cache_size--;
}
return (pte_t *)ret;
}
extern __inline__ void free_pte_fast(pte_t *pte)
{
*(unsigned long *)pte = (unsigned long) pte_quicklist;
pte_quicklist = (unsigned long *) pte;
pgtable_cache_size++;
}
extern __inline__ void free_pte_slow(pte_t *pte)
{
free_page((unsigned long)pte);
}
/* We don't use pmd cache, so this is a dummy routine */
extern __inline__ pmd_t *get_pmd_fast(void)
{
return (pmd_t *)0;
}
extern __inline__ void free_pmd_fast(pmd_t *pmd)
{
}
extern __inline__ void free_pmd_slow(pmd_t *pmd)
{
}
extern void __bad_pte(pmd_t *pmd);
#define pte_free_kernel(pte) free_pte_fast(pte)
#define pte_free(pte) free_pte_fast(pte)
#define pgd_free(pgd) free_pgd_fast(pgd)
#define pgd_alloc() get_pgd_fast()
extern inline pte_t * pte_alloc(pmd_t * pmd, unsigned long address)
{
address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
if (pmd_none(*pmd)) {
pte_t * page = (pte_t *) get_pte_fast();
if (!page)
return get_pte_slow(pmd, address);
pmd_val(*pmd) = (unsigned long) page;
return page + address;
}
if (pmd_bad(*pmd)) {
__bad_pte(pmd);
return NULL;
}
return (pte_t *) pmd_page(*pmd) + address;
}
/*
* allocating and freeing a pmd is trivial: the 1-entry pmd is
* inside the pgd, so has no extra memory associated with it.
*/
extern inline void pmd_free(pmd_t * pmd)
{
}
extern inline pmd_t * pmd_alloc(pgd_t * pgd, unsigned long address)
{
return (pmd_t *) pgd;
}
#define pmd_free_kernel pmd_free
#define pmd_alloc_kernel pmd_alloc
#define pte_alloc_kernel pte_alloc
extern int do_check_pgt_cache(int, int);
extern inline void set_pgdir(unsigned long address, pgd_t entry)
{
struct task_struct * p;
pgd_t *pgd;
#ifdef __SMP__
int i;
#endif
read_lock(&tasklist_lock);
for_each_task(p) {
if (!p->mm)
continue;
*pgd_offset(p->mm,address) = entry;
}
read_unlock(&tasklist_lock);
#ifndef __SMP__
for (pgd = (pgd_t *)pgd_quicklist; pgd; pgd = (pgd_t *)*(unsigned long *)pgd)
pgd[address >> PGDIR_SHIFT] = entry;
#else
/* To pgd_alloc/pgd_free, one holds master kernel lock and so does our callee, so we can
modify pgd caches of other CPUs as well. -jj */
for (i = 0; i < NR_CPUS; i++)
for (pgd = (pgd_t *)cpu_data[i].pgd_cache; pgd; pgd = (pgd_t *)*(unsigned long *)pgd)
pgd[address >> PGDIR_SHIFT] = entry;
#endif
}
extern pgd_t swapper_pg_dir[1024];
extern __inline__ pte_t *find_pte(struct mm_struct *mm,unsigned long va)
{
pgd_t *dir;
pmd_t *pmd;
pte_t *pte;
va &= PAGE_MASK;
dir = pgd_offset( mm, va );
if (dir)
{
pmd = pmd_offset(dir, va & PAGE_MASK);
if (pmd && pmd_present(*pmd))
{
pte = pte_offset(pmd, va);
if (pte && pte_present(*pte))
{
pte_uncache(*pte);
flush_tlb_page(find_vma(mm,va),va);
}
}
}
return pte;
}
/*
* Page tables may have changed. We don't need to do anything here
* as entries are faulted into the hash table by the low-level
* data/instruction access exception handlers.
*/
#define update_mmu_cache(vma, addr, pte) do { } while (0)
/*
* When flushing the tlb entry for a page, we also need to flush the
* hash table entry. flush_hash_page is assembler (for speed) in head.S.
*/
extern void flush_hash_segments(unsigned low_vsid, unsigned high_vsid);
extern void flush_hash_page(unsigned context, unsigned long va);
#define SWP_TYPE(entry) (((entry) >> 1) & 0x7f)
#define SWP_OFFSET(entry) ((entry) >> 8)
#define SWP_ENTRY(type,offset) (((type) << 1) | ((offset) << 8))
#define module_map vmalloc
#define module_unmap vfree
/* CONFIG_APUS */
/* For virtual address to physical address conversion */
extern void cache_clear(__u32 addr, int length);
extern void cache_push(__u32 addr, int length);
extern int mm_end_of_chunk (unsigned long addr, int len);
extern unsigned long iopa(unsigned long addr);
extern unsigned long mm_ptov(unsigned long addr) __attribute__ ((const));
/* Values for nocacheflag and cmode */
/* These are not used by the APUS kernel_map, but prevents
compilation errors. */
#define KERNELMAP_FULL_CACHING 0
#define KERNELMAP_NOCACHE_SER 1
#define KERNELMAP_NOCACHE_NONSER 2
#define KERNELMAP_NO_COPYBACK 3
/*
* Map some physical address range into the kernel address space.
*/
extern unsigned long kernel_map(unsigned long paddr, unsigned long size,
int nocacheflag, unsigned long *memavailp );
/*
* Set cache mode of (kernel space) address range.
*/
extern void kernel_set_cachemode (unsigned long address, unsigned long size,
unsigned int cmode);
/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
#define PageSkip(page) (0)
#define kern_addr_valid(addr) (1)
#endif __ASSEMBLY__
#endif /* _PPC_PGTABLE_H */